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Abstract 

Algebro-geometric methods are applied to the theoretical understanding of the fractionary quan- 
tum Hall effect on a periodic lattice. The fermionic Fock space of the many-electron system is 
precisely identified, and as a consequence, the variational Haldane-Rezayi ground state is decom- 
posed in terms of one-particle wave functions at the first Landau level; the filling factor is thus 
analytically computed. Quasi-hole and quasi-particle excitations are also analyzed. The center of 
mass dynamics is described in terms of a section in a very subtle stable vector bundle. The Hall 
conductance arises as a topological invariant; namely, the slope of the vector bundle previously 
mentioned. 0 1998 Elsevier Science B.V. 
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1. Introduction 

During the century following its discovery, the classical Hall effect [l] has been proved 
to be very effective in determining the electronic properties of many conducting systems 
in solid state and condensed matter physics. Electric currentsj in the presence of constant 
magnetic fields B perpendicular toj are deflected by the Lorentz force; as a consequence 
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an electric field E proportional toj A B builds up. The conductivity tensorj = aE is off- 
diagonal with non-zero components of the form fouls. oH is usually referred to as Hall 
conductance; 6 is the thickness of the sample, and it happens that in the classical Hall 
experiment OH = (e2/ h)(&. The filling factor vu is the ratio of the number (density) of 
electrons to the number (density) of Landau states, organized in degenerated levels, in the 
sample. 

Circa 1980 spectacular experiments by von Klitzig et al. and Tsui et al. (see, e.g., 
[2]) unveiled a completely new scenario: in two-dimensional electronic systems, such 
as occur in MOSFET devices and/or semi-conductor heterojunctions, the dependence 
of CH on Vu departs drastically from the classical behavior if the experiment is per- 
formed at very low temperatures and very high magnetic fields. The new features are as 
follows: 
1. OH is always ne2/ h, in MOSFET devices, and/or (n/m)e2/ h, in heterojunctions, n, m 

being integers. The Hall conductance is quantized and this phenomenon is referred to as 
the quantum Hall effect, either integer, IQHE, or fractionary, FQHE. 

2. There are plateaux around the SpeCid values VH = it or Vu = n/m where the exper- 
imental outcome coincides with the classical case; varying VH, however, au does not 
change in the QHE. 

Under the circumstances of the QHE flH is independent of the geometrical and internal 
structures of the Hall devices, as well as of the magnetic field B, to an extraordinary high 
level of precision. The quantum Hall effect thus becomes a universal phenomenon with a 
deep origin and very rich structures. In the last 15 years we have witnessed how theoretical 
explanations have developed rapidly and how experimental aspects have been exhaustively 
analyzed. An excellent summary may be found in [2]. 

A satisfactory theoretical explanation of both the fractionahty of CH and the existence 
of plateaux in the FQHE - points 1 and 2 above - has not yet been completely devel- 
oped. The mechanism giving rise to the plateaux is quite unclear - see [3] - as op- 
posed to our understanding of the same phenomenon in the IQHE, where it seems to 
be due to the existence of localized states; this kind of state does not exist in high- 
mobility electron systems. Rather than impurities, electron-electron interactions play an 
important role in the FQHE and the crucial issue is the search for ground states of the 
many-electron system giving fractional Hall conductivity. Laughlin theory [4] rests on a 
variational wave function of Jastrow-type which succesfully describes the ground state of 
a two-dimensional gas of interacting electrons under the circumstances of the FQHE as a 
new kind of quantum fluid; the associated filling factor is 1 /m, with m odd, and thus solves 
point 1. 

With respect to point 2, the existence of a gap in 0~ calls for a topological interpretation 
of the Hall conductivity in the same spirit as the description of Thouless [5] of UH in 
the IQHE as the first Chern class of a line bundle over the torus parametrizing the first 
magnetic Brillouin zone. As mentioned above, the reasons why oh = ne2/h, IQHE , and 
OH = (n/m)e2/h, FQHE, remain constant when the filling factor is slightly changed are 
different; thus, the Thouless approach without any modification cannot be applied to explain 
plateaux in the FQHE. Attempts to generalize the topological nature of oH to the fractionary 
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QHE start out from considering that the phenomenon occurs on a periodic lattice instead 
of on the complex plane or a compact subspace of it, see [6]. This leads to studying the 
problem on a torus, and for this and another reasons, e.g., numerical computations as in [7], 
the work on this subject in the physical literature is vast. 

The main theme of this paper is to develop a precise mathematical description of the 
FQHE on a torus. The issues to be considered in the framework of the algebraic geometry 
throughout the work can be separated into two parts: 

1.1. The Laughlin, quasi-hole and quasi-particle wave functions on a torus 

From a mathematical point of view, the main idea to be developed concerning these 
variational states is the demonstration that the observations made by physicists about the 
ground state of the FQHE on a torus and its excitations are natural consequences of the 
classical addition formulas for elliptic Theta functions [8] and certain higher-order addition 
formulas that we prove. 

Historically, it was Yoshioka, [9], who determined for the first time the fermionic Fock 
state built out of the first Landau level for a charged particle moving in a torus under a 
constant magnetic field. In [6], Tao and Haldane identified the first Landau level mentioned 
above as the space of sections of the line bundle of M-order Theta functions over .X = 
C/(Z CD tZ): r(Bc (ke)), where X is the principal cell of the periodic lattice and t is 
the modular parameter of the torus related to physical quantities, as we shall explain later. 
The main breakthrough, however, came from the work of Haldane and Rezayi [lo]. In 
this seminal paper, the Laughlin wave function was generalized to the periodic case; as a 
consequence, the origin of the non-trivial center of mass dynamics of N electrons moving in 
a torus was understood. Moreover, variational wave functions for the elementary excitations 
of quasi-hole type on a torus were also proposed and a formal definition of quasi-particle 
wave functions was suggested by the authors. 

In this context we address and clarify the following questions: 
- The Haldane-Rezayi ground state mimicks the Laughlin wave function by replacing 

monomials in the relative coordinates zi - zj of the ith and jth particles by odd Theta 
functions of the same arguments. (Magnetic) translation invariance of an N particle 
system in the plane calls for the profitable use of center of mass and relative coordinates. 
In order to understand the precise meaning of (magnetic) translationally invariant states 
of N particles on a torus, we must recall, e.g., for N = 2 particles, that the transformation 
(~1, ~2) + (zl + ~2, ZI - zz) is not a change of variables in the product _X x X of the 

torus L: by itself. This transformation is indeed a morphism Z x .X L Z x JC of 
degree 4, an observation which does not appear to have been recognized in the physics 
literature. 

- Together with the higher-order addition formulas this inquiry allows us to prove the 
identity of the fermionic Fock space F(r(oc(ke))) built out of the one-particle first 
Landau level with the space of sections of the line bundle where the Haldane-Rezayi 
state is defined. This provides the analog of the expansion of the Laughlin state as a 
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linear combination of Slater determinants and explicitly states that the filling factor for 
the Haldane-Rezayi wave function is l/m = N/k, as it should be. We thus find that the 
Haldane-Rezayi state is essentially unique and determined by a very broad principle of 
(magnetic) translation invariance restricted by the boundary conditions of the periodic 
lattice. 

- We also identify the bundle where the quasi-hole wave function is defined as a holomor- 
phic section and compute the quasi-hole fractionary charge in terms of a characteristic 
class of this bundle. We also show that the analog quasi-particle bundles do not admit 
global holomorphic sections so that quasi-particle wave functions on a torus cannot be 
defined inside the first Landau level. 

1.2. The topological nature of the FQHE conductivity 

Investigation of the dependence of the center of mass wave function of a system of N 
electrons in the FQHE phase on solenoid fluxes, one of which is inside a torus and the 
other passing through its center, led Tao and Haldane, see [6], to interpret Hall conductivity 
in terms of the first Chem class of a bundle where the Bloch magnetic functions are the 
sections. In a very interesting paper, Varnhagen [ 1 l] improved our knowledge of this con- 
ceptual advance by recognizing the bundle as a rank m vector bundle and suggested that 
the physically emerging plateaux correspond to stable bundles. 

The second part of the paper deals with a rigorous mathematical formulation of 
Varnhagen’s work and is devoted to: 
(a) Identification of the vector bundle by means of a Fourier-Mukai transformation, see 

WI. 
(b) Proof that the slope of the bundle coincides with the Hall conductivity which is therefore 

a topological invariant with rational values. 
(c) Proof of the vector bundle stability when the denominator is odd. 
(d) The demonstration of canonical isomorphisms between the vector bundles associated 

with systems of N and N - 1 particles. This mathematically confirms physicists appri- 
oristic point of view that only the center of mass dynamics matters with respect to the 
fractionality of Dn. 

Finally, our mathematical analysis suggests that one important role in the problem of 
unveiling the reason for the existence of plateaux in FQHE devices, with weak impurities 
and low levels of disorder, is played by the moduli space of stable bundles: changes in the 
filling factor of high-mobility electrons merely produce variations in the moduli space of 
stable bundles. 

The organization of the paper is as follows: In Section 2 the Landau problem for a 
charged particle moving in a periodic lattice is solved and the first Landau level identified 
as spanned by a basis formed by elliptic Theta functions. Section 3 is devoted to the many- 
particle problem in increasing order of complexity. Quasi-holes and quasi-particles are also 
dealt with. In Section 4 an effective topological quantum field theory describing the center 
of mass dynamics is developed; the associated vector bundles are studied and the role of 
the slope is analyzed. Finally, in Section 5 a summary and outlook are offered. 
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2. The Landau problem in a periodic lattice 

2.1. One-particle Hilbert space 

If the motion takes place in a two-dimensional periodic lattice, the one-electron config- 
uration space is the elliptic curve Z = C/(Z $ r Z). Points in the complex plane @ related 
by the discrete translation group r : z + z + n 1 + nzt, n 1, n2 E B, are identified. Here 
z = x1 + in2 is a non-dimensional local coordinate in @: XI = Xl/Ll, x2 = X2/L,, where 
L 1 is the length of the lattice in the direction chosen as the it -axis. The modular para- 
meter t = L2eie/L1 belongs to H, the upper half-plane, because the whole system may 
be arranged in such a way that Imt > 0, L2eie being the complex parameter of the second 
periodicity. We consider a line bundle & over Z: with connection and curvature given by 

2nk 2nk A=- ---x2ch; 
Imt 

FA = -4xldx2. 
Imt 

The degree of the bundle is cl (&) = 1/2n SC FA = k E Z and is related with the external 
constant magnetic field as follows: 

eB LILTsin eB 
2nk = hc =- 

Imt -hc 
LT. (2) 

The quantum space of states of this system is the space of L2-integrable sections in &, 
r (,Z, &). The quantum dynamics is essentially due to the Laplacian acting on r (Z, &) . 
The “creation” and “anihilation” operators, in physicist’s terminology, 

are the a- and &operators with respect to the complex structure defined by t and k; and the 
Hamiltonian is the differential operator 

H = ho,(a+a + $), 
A 2nk f&E-- 

m, Imr’ 
[a, a+] = 1. 

Notice that the a and at operators have been normalized in such a way that their com- 
mutator is 1 and m, is the effective mass of the electron. 

Eigensections of the Hamiltonian are the stationary states and the space r(Z, &) de- 
composes as the direct sum of eigenspaces of H: 

r(E,LCk) = @%,(~,~kh 
N 

An element of rE,,, (x, &) can be understood as a function on c obeying the spectral 
equation 

H@N=EN+N (4) 

and the periodicity conditions: 
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@N(z + 1, .i + 1) = +N(z, i), 

$N(z + 5, z + 7) = exp{-2nikRe(z + ;t)}@N(z, 2). 
(3 

Mathematically, (5) guarantees that H acting on such a space of functions is a well- 
defined self-adjoint operator. On the physical side the second equation of (5) tells us that 
the magnetic field yields a Galileo transformation along the xl -axis, projectively represented 
via a one-cocycle as usual, in the quantum space of states. 

The first eigenvalue is Eo = +Aw, and occurs for functions such that 

( $+i& Imz 
> 

*o(z, Z) = 0. 

One finds that the space of solutions of (6), usually called the first Landau level, complying 
with (5) is of dimension k. The set of functions 

I = 0, 1,2, . . . , k - 1, where the Riemann Theta functions with characteristics are defined 
as, see [S], 

0 [I] k I r> = C exp (2ni[(n + a)(~ + b) + i(n + aj2~]) , 
n&f 

form a basis of F~~(z1, &). In fact we can write I++o~ in the form 

to see that the first Landau level is H’(E, &), the space of holomorphic sections of &: 

0 
fi(zlt) = @ l,k 

[ 1 (zlt/k), Z=O,l,..., k-l. 

The higher Landau levels, the eigenspaces of eigenvalues EN = fiw,(N + &), N > 0, 
are also of dimension k. A basis in rEN (.F, &) is provided by 

@Nl(Z, i) =e- (nk/Im s)(Im z)* C e2nin(z+l/k) HN 

nd 
(Eb+2,) 

where NN (y) is the Nth Hermitian polynomial. 

2.2. The topological limit 

The first ‘Landau level’ for the one-electron problem is the only surviving subspace of 
the Hilbert space when taking the topological limit, m, + 0. In the complex plane the 
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topological limit amounts classically to a reduction of the phase space from T*@ to @. 
Geometric quantization tells us how to deal with this process in the quantum domain. 

Given a holomorphic function and two real numbers a and b, consider the transformations 

W)f(z) = f(z + b), T(a)f(z) = exp(ina*s + 2niaz)f(z + as) (7) 

with the composition law 

S(h) 0 S(h) = S(bl + bd, Th) 0 T(a2) = T(al + ~2). 

The S and T operators do not commute with each other: 

S(b) o T(u) = e2niabT(u) o S(b), 

i.e. there is a two-cocycle w2 (z; a, b) = ub. They form an honest unitary representation of 
the Heisenberg group GH = CT ~3 R 63 R, CT = {h E C I Ihl = l), with group law: 

(A, a, b)(v, c, 4 = (hy exp@nibc), a + c, b + 4 

if (A, a, b) E GH on the Hilbert space ‘Ft = {f 1 llfll* < +a}, 

llfll* = [ e-2”x:lf(z)12~ 

L 

given by 

U(h, a, b)f(z) = h(S(b) o T(u))f(z) = kenia2s+2aiazf(z + as + b). 

Let us denote by Ft the subgroup of Gn chosen as follows: rl = (( 1,1zl, n2) E GH/ 
n 1, It2 E Z}. Let fll(l, n2, n2) be the corresponding irreducible unitary representation: 

U(1, nl, nz)f(z) = T(nl) o S(nz)f(z) = einn?s+2nin1zf(z + nls + n2). 

If we identify s with the modular parameter t, which thus appears as a characteristic 
“complex” time of the system, the invariant subspace under fi 1 of X, 

‘X1’ = {f(z) E ‘WU(1, n1, ndf(z) = f(z) mod co-cycles}, 

is the first Landau level. f(z) E X1 ’ if and only if 

f(z + 1) = f(z), f(z + t) = e-*~ik(z+~/*)f(Z) 

so that 

(8) 

and ‘FI” is isomorphic to H”(E &) 9 . 
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For later use, another basis of H”(Z, &) is convenient: one can check that 

and use the 

gl(z I t) = 0 
[ 1 
“?’ (kzlkt) 

as another basis in H’(E, &): 

(&?l, 9 &T/2) = s dzdZ 
e-2n(1m z’2/1m ‘gc (Z)gl, (Z) 2i = &,lz. 

More important: conditions (8) can be generalized to 

f(z + 1) = e2ni@r f(z), f(z + r) = e*ni42 e-*xik(z+r/*)f(Z), (9) 

with 41, C#Q E [O, 11. Physically it describes the double Aharanov-Bohm effect due to 
solenoid fluxes arranged as in the Thouless gedanken experiment, see Section 4. Mathemat- 
ically, we deal with a family of line bundles Lk (41, $2) parametrized by the Jacobian of .Z 
or the Picard group, the manifold of flat line bundles over Z. A basis in H’(E, Lk(c#q, 42)) 
is thus given by 

fim(,lr)=O[(z+~)‘k](kz,kT), l=O,l,...,k-1, 

which span the first Landau level. Physically, one can also understand the Jacobian as 
parametrizing “continuous” spin structures. This is not a problem in (2 + 1)-dimensions 
where both the spin and the statistics can be continuous. 

In fact, the case 41 = $2 = $ is usually taken into account in the physics literature to 
describe odd wave functions. This choice would produce problems in the many-body wave 
functions because the use of addition formulas in Section 3 to compute the filling factor 
would require one to use simultaneously the e5 = 0 and q.j = i cases, the analogs of the 
Ramond and Neveu-Schwartz fermionic sectors of string theory [13], which are discon- 
nected. We thus prefer to stick to the more general perspective meant by Ho (E, & (41 , 42)). 

To end this section, we comment on the fact that all the rEN (E, Lk) eigenspaces are iso- 
morphic; they are thus probably formed by holomorphic sections of a bundle, also of degree 
k, with a different complex structure. 

3. The ground state of the fractional quantum Hall effect 

3.1. Laughlin state on a torus: Haldane-Rezayi wave functions 

The nature of the ground state of a two-dimensional gas of electrons lies at the heart 
of the quantum Hall effect. The low temperatures and energies involved suggest that only 
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the first Landau level enters the many-body ground state wave function. For a Hall device 
topologically equivalent to an open disc Laughlin [4] proposed the following wave function: 

PL = n(zi - zj)" exp 
iij 

(-lgl;i 12). (10) 

We take zi as the non-dimensional coordinate for the ith electron; m = 2p + 1 is 
an odd positive integer, and N the total number of electrons in the sample. WL is a precise 
combination of Slater determinants, the Vandermonde determinant if m = 1, and the number 
of one-electron occupied states is NL = m (N - 1) + 1. Notice that the first Landau level, in 
the symmetric gauge, is formed by linear combinations of the monomials z,q if we consider 
the problem in the complex plane @. NL is read from repeated use of the binomial formula 
and the filling factor UL = N/NL is l/m = 1/(2p + 1) when N + co. If 0r-t = (e2/h)x, 
this provides an explanation for the ‘rational’ quantification of (h/e2)CTu in the fractional 
quantum Hall effect. There is an overwhelming evidence that PL is a very good variational 
ground state for the many-body Hall Hamiltonian when two-body electron interactions are 
included. Moreover, a whole hierarchy of filling factors and plateaux centers are obtained 
by also considering quasi-particle and quasi-hole wave functions: 

Vqe = 2pnge f 1’ 
'%h 

uqh = ’ - 2pnqh f 1. 

(11) 

There is one drawback however: PL provides a non-degenerate ground state and there is no 
generalized Thouless formula [S], see Section 4, which shows UH in terms of the ground state 
of the system as a topological invariant, independent of the perturbations induced by adiabat- 
ically changing solenoid fluxes: there is no reason to keep fixed OH when uu changes and no 
explanation for the plateaux is provided merely by identifying the ground state of the FQHE. 

In the case where the two-dimensional many-electron Hall fluid moves in a periodic 
lattice, Haldane and Rezayi[ lo] have shown how to generalize Laughlin’s variational state. 
The many-body Hamiltonian is 

with ai the differential operator of Section 2.1 for the ith electron. Denote by m = 2p + 1 = 
k/N, a positive odd integer number, the ratio of k to the number of particles N. According to 
previous experience the candidates to become the ground state should be analytical functions 
in the zi ‘s, apart from the prefactor that may be included in the integration measure of the 
L2-hermitian metric, satisfying the periodicity conditions: 

*(Zl, . . . , Zi + 1,. . . , ZN) = (-1)N-‘e2Ki@1w(zt, . . . , Zi, . . . , zp/), 

!P(z~, . . . , zi + t, . . . , ZN) = (-1)N-‘e-2Ki@2 exp{-2nik Re(zi + ir)} 

xW(z1,. . . , zi, . . . , zlv) 

(13) 
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for every i. We allow for arbitrary phases which mathematically amounts to tensoring with 
flat bundles. By doing this, we take into account the physical effect of the solenoid fluxes 
encircled by the homology-generating one-cycles. 

Translational invariance in the complex plane case calls for the use of center of mass, 
Z = CL, zi, and relative, zij = zi - zj, coordinates, Haldane and Rezayi, mimicking 
the Laughlin-Jastrow ansatz of the non-periodic case, proposed the following many-body 
wave function as the ground state of the FQHE on a periodic lattice: 

PY(Zl, z2,. . . > ZN) = FHR(Zl, Z2,. . . , ZN>e 
-irk/h T Cy=, (h Zi)* 

FHR(Zl,Z2, . . . 9 ZN> = F(Z) n f(Zij). 

iij 

(14) 

In order to satisfy Fermi statistics and comply with conditions (13), the relative wave 
functions must be odd when changing zij to -zij and must satisfy 

f(zij + 1) = 17lfCZijI7 f(Zij + S> = q2 ex@nhZij)f(Zij), (15) 

where r]t and q2 are constant phases. The choice of Haldane-Rezayi is 

f(Zij) = On iii 
[ I 

(Zij It) (16) 

a section in HO(z(i, j), ,Cym): ct(C~“) = (1/2ni) [dlog f = m. From (13)-(16) one 
c 

obtains 

F(Z + 1) = ei2n@1F(Z), 

F(Z + t) = e-i2nb* exp(2nim(Z + it))F(Z). (17) 

Thus 

solves (17). The Haldane-Rezayi wave function 

(18) 

(19) 

is in times degenerated. The degeneracy is due to the center of mass dynamics which is not 
trivial when the configuration space is compact. 

A very important ingredient of the variational approach to the FQHE in the complex plane 
is lacking in the generalization to a periodic lattice: there is no analog to the expansion of 
the Laughlin wave function as a linear combination of Slater determinants, explicitly used 
in the physics literature. Therefore, it is not possible to make a direct computation of the 
filling factor corresponding to the Haldane-Rezayi ground state. Related to this problem 
are difficulties in the definition of quasi-particle and quasi-hole states on a periodical lattice 
in a logical way. 
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We shall develop the Haldane-Rezayi wave function in terms of one-particle Landau 
states in the next section: the use of addition formulas will lead us to obtain the filling 
factor in a precise way. By extending this procedure we shall deal with the definition of 
quasi-particle wave functions in a periodic lattice, still an open question in the theory. A fine 
point that we shall address in our derivation is the problem of passing to CM and relative 
coordinates. On a genus 1 Riemann surface this is not an injective change of coordinates, 
but a 2N to 1 map, an isogeny between Cartesian products of elliptic curves. 

3.2. Addition formulas 

In this section we shall offer a geometric formulation of the Haldane-Rezayi wave func- 
tion (19) for the ground state of the fractional quantum Hall effect in the periodic case. There 
are two main results: firstly the proof that the Haldane-Rezayi wave functions are unique 
verifying certain natural invariance conditions; secondly, the expression of the Haldane- 
Rezayi wave function in terms of one-particle states leading to an explicit computation of 
the filling factors in the periodic case. Both points are skipped in the physics literature about 
the FQHE on a periodic lattice but focus on the problems mentioned in the previous section. 
In particular, the use of CM and relative coordinates for a system of N particles moving in 
@ is convenient when the system enjoys translational symmetry. In a periodic lattice there 
is only symmetry under a subgroup of the translation group: one would expect difficulties 
in using an ansatz such as (14) in the periodic case. We shall develop with precision the 
cases of N = 2,3 electrons. In the general case, we shall give the explicit formulas. The 
proof will appear elsewhere [ 141. 

We recall from Section 2.1 that the first Landau level in the periodic case is given by the 
vector space Ho (X, ,&) . Assuming that an origin e E X for the group law of Z is fixed and 
that Ck = 0~ (ke), then the holomorphic global sections H’(Z, &) are identified with the 
vector space of kth-order Theta functions of the elliptic curve Z which are the one-particle 
states in the topological limit. 

3.2.1. N = 2 electrons 
The phase space of a system of two electrons in the topological limit is the product surface 

.X x .Y. The line bundle accounting for the fact that they are in the presence of a magnetic 
field compatible with the lattice is 

pi : 2: x Z + Z being the two natural projections. 
Let vk = H’(_X, &) be the vector space of k&order Theta fuctions. By the Kiinneth 

formula we have 

Ho@ x x, M2) = vk @c vk. 

The quantum space of states of two electrons moving in a periodic lattice in the 
topological limit is a certain subspace of vk 8 vk which we are going to characterize. The 
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Laughlin-Jastrow variational approach to the FQHE of N = 2 electrons in the complex 
plane is based on the change of variables given by the equations 

(Zlv 22) - (21 + 22, Zl - z2> 

The Haldane-Rezayi generalization to the periodic system makes use of a similar map- 
ping. The main difference is that the above equations do not define a change of variables, a 
one-to-one map, in Z x L;. With precision, let us consider the morphism of surfaces: 

defined by ,!j(zl,z2) = (ZI + ~2, z1 - ~2). It is well known that 4 is a finite morphism of 
degree 4; i.e. c is an isogeny of abelian varieties and the kernel of 6 is 

,Z2 = {z E .Z such that 22 = 0 in X} 2 h2 x H2 

immersed in C x Z by the diagonal. 
A fundamental element of our formulation is the geometric version of the classical ad- 

dition formula which describes the pull-back of a line bundle over Z x Z by the isogeny 

6: 

Addition Formula (Mumford [15]). Let .C be a symmetric line bundle over -Et ((-l)*L = 
L). There exists an isomorphism of line bundles over .IC x .E: 

As a consequence, we deduce the existence of a homomorphism between the vector 
spaces of holomorphic sections: 

e* : HO(E, L) c3 z&E, L) + HO(E, L@) ca HO(Z, L@) 

such that given 8, n E H”(X, L): 

~“(O(Zl> c3 q(z2)) = B(Zl + Z2MZl - z2) 

and given a basis {Oi} of H’(Z, La’) we obtain the relation 

B(Zl +Z2)1](21 - Z2) = CkjQi(Zl)ej(~2). (20) 

In the FQHE on a periodic lattice the natural invariance conditions to impose on the wave 
functions are restricted to the subgroup 

A(u) = (a, cx) is the embedding by the diagonal of o E &. This in turn requires that 
j$& @J p;Lk should be invariant by A(&), which happens if and only if k = 2m for a 
positive integer m . 
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Application of the addition formula and the above considerations to the line bundle 
,C, = 0~ (me) lead to the following results: 

There exists an isomorphism of line bundles 

6*(@, 8 P&n) g PTLk 8 P;‘ck, 

with k = 2m. 
The line bundle PT& 8 && is invariant by A(_&). Moreover, under theSe invariance 
conditions, there is a homomorphism of vector spaces: 

where V, = H”(z, &>, Vk = H”(E, &). 
Let Ek (2) be the quantum vector space of the two-electron system occuping states in the 

first Landau level. We assume that the vectors in Ek (2) satisfy, on one hand, the translation 
invariance condition with respect to the two-torsion, .?72. and on the other hand, fermionic 
statistics. The first assumption tells us that Ek(2) is a vector subspace of the image of the 
homomorphism e*, Im 4*. The second condition about the statistics means that Ek(2) is a 
subspace of A2 vk , the second exterior power of vk : 

Ek(2) = Im(e*) n A2vk C vk @ I$. 

Given our intrinsic characterization of the vector space of wave functions as a subspace 
Of vk @ vk, We Can Compute it explicitly: 

Let V,’ be the subspaces of V, formed by eigenvectors of the action of the automorphism 
[-l] : E + z, [-l](Z) = -Z. The VeCtOr Space Of Wave fUnCtiOns is Ek(2) = t*(v, 8 
V;) and a basis in Ek(2) is given by 

ejczl + z2)ejT(z1 - z2); i = 1,2,. . . , m, j- = 1,2,. . . , i<m - 11, 

where 

is a basis of V,,, and 

is a basis of V;. 

Proposition 1. For each wavefuction 0, (ZI + z2)6”: (zl - z2) E h(2) it is w-iied that 

&(Zl + z4321 - z2) = ~~ij(B,!k)(Zl)ei(k)(ZZ) - eio(LlNp(z2)), (21) 
i-cj 
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(Rlx’(,)=n[~~](kz,ki). i=l,2 ,..., k} 
is a basis of Vk. 

This is an inmediate consequence of the identity Ek (2) = 5 * (V, 69 Vi). Note that this 
result is the analog in the periodic case of the development in terms of Slater determinants 
of the N-particle wave functions used in the complex plane case. 

The Haldane-Rezayi wave function (19), for 41 = C&J = 0, 

D=h-1)/2 , i ,, 
FpR(Z1, z2) = 4(21 + Z2) c Cj_@J~(Z1 - Z2)> 

j-=1 

I= 1,2,..., m, includes a special linear combination 

em 
[ I iii (Z] -Z2lt) = CCj_@,T(Zl -Z2), 

j- 

with a single zero of order m at zt - z2 = 0 and no other zeros away from the diagonal. 
The important physical point is that Proposition 1 allows US to write a general wave 

function F(zr , ~2) in the form 

F(Zl, Z2) = C hij(Bi(k)(Zl)@j(k)(Z2) - ey’(Zl)e/k)(Z2)). (22) 
iij 

In particular, this expression is valid for the Haldane-Rezayi wave function FrHR (z 1,z2) 
for a specific set of constants. Using (22), the Haldane-Rezayi wave function can be given 
explicitly in terms of the one-particle quantum states belonging to the first Landau level. 
There are k states to be occupied by two particles in one anti-symmetric combination. The 
filling factor of the Haldane-Rezayi ground state is thus: UHR = 2/k = l/m. This is an 
obvious consequence of Proposition 1 since dim& is k = 2m. 

3.2.2. N = 3 electrons 
The system is now described by the line bundle 

M3 = PyLk 8 P;Lk ‘8 P;Lk 

over 2: x _E x E;, pi : E x .E x _E + 22 being the natural projections. Let X3 = {z E .E 
such that 32 = O] be the subgroup of three-torsion points of E and let us consider the 
diagonal immersion 

.E3d\z,xiTxz 

a + (a,a,a). 

We impose on the system the condition of translation invariance with respect to the group 
A(E3). M3 is invariant by A(&) if and only if k = 3m for a positive integer m and this 
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condition is also equivalent to the existence of an isomorphism & 2: Lg3. For physical 
reasons we shall assume that m = 2p f 1 (p ( 1, p E if?). 

A parallel analysis to the N = 2 case requires the formula of the Cube (Mumford [8]): 
Let m : Z x JZ x Z: + E be the addition map, mij : E x E x Z + .Z, the partial 

addition maps and pi : .E x .IC x E + Z the three projections: 

m(zl,z2,z3)=zl+z2+z3, 

mij(Zl, Z2,Z3) =Zi + Zj, Pi(Zlt Z2r Z3) = Zi. 

Given a line bundle C over Z, there exists a natural isomorphism 

m*C S mT2L 8 mT3L 18 mz3L 8 pTL_’ 63 p2*L-’ f8 p3*L-’ 

between line bundles over .E x E x Z. 

(23) 

Moreover, denoting by sij : L: x E x E + t; the subtraction morphisms, Sij (z 1, ~2, ~3) = 
zi - zj, there exists an isomorphism between line bundles on .E x Z x 22: 

m*L 8 sT2C 8 sF3L 8 sjL s pTC@’ @ pz*La3 8 p;L”. (24) 

This follows from the isomorphism rnt C @ s$ C E pTC@’ 8 pTLm2 and the Cube formula 
(23). Applying the above isomorphism (24) to the line bundle, M3 = p:Lk 69 pz’ck 8 pg& 

invariant with respect A( JC3) 

H”(z, Lk) 8 Ho& Lk) '8 H"(z, Lk) 

E HO(,Z x C x E:, m*L, @ sl;L, 8 sT3Lc, 8 SJ3L,). 

Fermionic statistics means that the vector space Ek(3) of wave functions is contained 
in the vector subspace A3 vk of vk @ vk @I vk. To deal with A(&) translation invariance, 
consider the morphism 

~3:Ex.xx~-+~xzx~x.Fc 

63(ZlvZ2,Z3)=(Zl +Z2+Z3,Zl -Z2,ZI -Z3,Z2-Z3). 

The kernel of 63 is A(Es) c E x E x E and it is verified that 

c$(pTLm @ p2*LCm @J p3*Cm 8 p:Cd g m*k @ sT2C, 8 sT3Lm @ s;~L,. 

There is a homomorphism between global sections: 

4 

Ho .?2 x 27 x E x .E, @pi”&,, 
i=l 

= v, ‘8 v, @ v, ‘8 v, 3 H”(E X z X z X z, M3) = vk ‘8 vk @ vk. 

Invariance under A(_&) means that Ek (3) c Im(e:) and 

Ek (3) = Im(6;) f-l A3 vk c vk '8 vk @ vk 
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is the quantum space of states of the three-particle system. Also, using the homomorphism 
between global sections above, it can be proved that 

63 is a morphism between varieties of different dimension, and hence it is very difficult 
to compute its equations explicitly. The solution to this problem will be to show that 63 

factors through an isogeny and then to apply the well-known results [ 151 about the explicit 
equations of the homomorphisms induced by isogenies between the vector spaces of global 
sections. 

The factorization of 63 through an isogeny is given by the commutative diagram 

where (p3(z1, z2, z3) = (ZI + z2 + z3, zl - z2, zl - z3) and L’123 is the projection into the 
first three factors. Let us define a line bundle N3 on E x E x 27 by 

One has that .ff~(@fZIpTLrn) = @N3 = M3. Then, Im(tT) = Im(@, and the compu- 
tation of 6: is reduced to computing ~0;. But ~3 is an isogeny and by applying the results 
on the behavior of global sections under isogenies [ 151 we finally obtain 

~03*(~[dl](Zl)~'[d21(22) @.e[d31(Z3) @$2@id3 -d21(Z)) 

= o[dl](Zl + Z2 +Zg)@[d21(Zl -ZZ)@[d31(Zl -Z3jeid3 -d21(Z2 -z3) (25) 

= ~~5 e[b11(Zl>e[b21(Z2>e[b31(Z3) 

I k 

Here 

B[dl(z) = 0 d = 3,6,9, . . . ,3m = k, 

e@](z) = 0 blk 
[ 1 o (kz ) kt), b = 1,2,. . . , k 

andbl+b2+bg~dlmodk,bl-b2~d2modk,bl-bg~d3modk.hEa=isaconstant 
independent of (dl , d2, d3). 

A basis for the wave functions in &(3) has the form 

e[dl](zl + z2 + zs)e-WJ(z1 - z2)0-]d;I(zl - ~3) 

x &[d; - dJ(zz - Z3) E Ek(3), 

where e_[d-l(z) = i(e[d-l(z) - 8[-d-l(z)), d- = 1,2, . . . . i(m - 1) = P. The 

Haldane-Rezayi wave function, m times degenerated, is 
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q$ZI, z27 z3) =W1l(z1 + z2 + z3V 
l/2 

[ 1 112 
l,2 (21 - z21rPrn l,2 

[ 1 X(Zl - z3lr)P 
l/2 

[ 1 l,2 (z2 - z3lr), 

which can be expresed as a state in & (3) by using 

tP 112 
[ 1 1,2 (Zi - Zj) = 2 Cd-@-[deI(Zi - Zj). 

Cd_=1 

FzT3 are special states characterized by having zeros of order m when zi - zj = 0 and 
no other zeros away from the diagonal. Using (25) the expansion 

Ft73(zr7 Z2,Z3) = 1 hi,i,i3~(~[bi,I(Zl)~[bi~l(Z2)e[big1(Z3)) (26) 

il42ci3 

decomposes the Haldane-Rezayi wave function into one-particle states. H is the antisymeti- 
zation operator 

~(e[~i,l(z1)~[bizl(z2)e[~i,l(z3)) 

= 
c sg(a>~[b,ci,)1(z1)8[b,(i,)1(z2)8[bo(i3)l(z3) 

UES3 

and hiri,i, E C. The filling factor is again IJHR = 3/k = l/m. 

3.2.3. N electrons 
The system is defined by the line bundle 

over E x ,E x + . . x Z (Ntimes) . The translation invariance condition under A ( EN) (EN 
being the N-torsion subgroup of ,E) is equivalent to saying that k = Nm. Let us consider 
the morphism p,$I : EN -+ EN given by 

YJoly(Zl,Z2,~~~, ZN) = (Zl + Z2 + ‘. ’ + ZN, zl - Z2, . . . , zl - ZN), 

qN is a finite morphism of kernel equal to EN 2 C N. Let NN be the line bundle over EN 
defined by 

One proves that (p& NN S MN = @El pF& for k = m N. There is a homomorphism 
between global sections: 

Ip$ : H”(EN, NN) + vkp.:.??vk, 
N 
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and arguing as in the N = 2,3 cases, we deduce that the vector space Ek(N) of wave 
functions is 

Ek(N) =Im(y$> n ANvk C vk$+:'?vk, 

and moreover, 

Ek(N) = q~;<vm ‘8’ v;$CJy?vn;‘. 
N-l 

The fermionic Fock space of the system is thus 

F = &k(N). 
N=O 

Again the Haldane-Rezayi ground state admits an expansion in terms of one-particle 
Wave functions living in vk , 

B[d](Zl + 22 + * * - +ZN)n@ 
i-cj 

=c hi,...i,H(B[bi,I(Zl) ” ‘~[bi,lzN) 

ili...iiN 

(27) 

6[d] E v,, Q[b] E vk, 

H is the antisymmetrization operator and hi, . ..iN are constants. The HR filling factor is thus 
UHR = N/k = l/m. Note that the general filling factor for a generic vector state in Ek (N) 
is also UC = N/k. 

3.3. Quasi-holes and quasi-particles 

Quasi-hole and quasi-particle excitations to the ground state of the FQHE in the complex 
plane were identified as having an important role by Laughlin [4]. Haldane and Rezayi [lo] 
also define quasi-hole and quasi-particle wave functions in a periodic lattice. In this section 
we shall develop a geometric formulation of the states mentioned above with the aim of 
clarifying some obscure points and difficulties arising in this matter. The main difference 
in our approach is that we do not define quasi-holes and quasi-particles by the action of 
appropriate operators on the Haldane-Rezayi ground state; instead, we adopt a broader 
point of view and focus on defining the spaces of wave functions of many-electron system 
including quasi-holes and quasi-particles intrinsically. 

3.3. I. Geometric formulation of a system with quasi-holes 
We study three significant cases: 



J.M. Guilarte et al/Journal of Geometry and Physics 27 (1998) 297-332 

3.3.1. I. Two electrons and one quasi-hole. Let us consider the set of morphisms: 

defined by: 

SlO(Z0, Zl, z2) = Zl - zo, s2o(zo, Zl? z2> = z2 - zo 

315 

and 

h2(zo, Zl, z2) = (zo, Zl + 22, Zl - z2). 

The system of two electrons and one quasi-hole is described by the line bundle 

M2.1 = P;Lk ‘8 &k 8 $ob 8 s;ob 

as follows: if k = 2m, there is a translation-invariance with respect to the two-torsion 

412(E), 412(a) = (0, a, a), (Y E A12(JW, and hence 

The change of variables in Z: x _E x E defined by a(zo, ~1, z2) = (-zo, ~1, ~2) makes 
explicit computations easier; we obtain the line bundle 

N2,1 = ~*M2,1 = pTCz2 @I pzCz2 8 mToC1 8 mgo.C1, 

where mlo(zo, zl, 22) = zo + zl, m2o(zo, ~1~2) = zo + 22. The quantum space of states 
of two electrons and a hole is a subspace Ek(2, 1) of the space of holomorphic sections 
of N2,1. H”(Z: x E x ,E, N2,1). The wave functions for the quasi-hole are the sections in 
Ek(2, 1). In particular, the Haldane-Rezayi wave function is 

FQH(z, Zl 22) =@ llrn 1 9’ [ 1 o (ZO + m(zl + z2)lmtW 1,2 
[ 1 1’2 (Zl - z2lt) 

x 0 [ ;;; 1 (Zl -zoltW [ :;; 1 (z2 - zolt). (28) 

The quasi-hole creation operator at the point zo E t= corresponds to multiplication by 

,ETI, @ [ :::I (zi - zOlt) 

of the ground state wave function. Observe that there is also a correction in the center of 
mass contribution; the QH coordinate zo enters the CM wave function with a different scale 
factor as compared to the particle coordinates. This produces differences in the holonomy 
with respect to particle holonomies in the ground state leading to fractionary charge and 
statistics as will be discussed in the sequel. 

There is another physically interesting point of view, see [3]. Integration on the electron 
coordinates, ~1, z2 in (28), yields an “effective” wave function for the quasi-hole showing 
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their physically relevant features. Geometrically, this amounts to taking the direct image 
with respect to pu : .E x E x Z: + E, (po(zo, z 1, z2) = zo), and considering the bundle 
W2,i = po*N2,r. Effective wave functions live in a subspace of H”(E, W~,J) but the 
interesting identity 

HO(Z: x z: x Z, N&l) = HO(Z:, W2,t) (29) 

holds. A subtle point is the following: NT, 1 is a line bundle but W2,1 is a vector bundle of 
higher rank. The space of effective wave functions of the quasi-hole is a subspace of the 
vector space H”(X, W2,t) of global sections of W2, I. We can compute the rank and the 
first Chern class of the vector bundle W2,r where the physical traits of the quasi-hole are 
encoded. 

In order to do this let us consider an isogeny lp : JiJ + Z, which is the finite morphism 
of degree (k + 1)2, such that 

v*w2,1 = ff”m &+P2 c3 C2k(k+l). (30) 

Proof of the existence of such a morphism will appear elsewhere [14] and depends on 
study of the Picard bundles over abelian varieties [ 161. From the identity (30) one can deduce 
that 

rank W2,r = (k + 1)2, ClW2,l) = 2w + 1) 

explaining the notation W2,i. The slope is 

2k 4m 
PW2,I) = - = ~ 

k-t1 2m+l’ 

To extract physical information from the geometric formulation we remark that Haldane 
and Rezayi analysis is based on the study of the set of zeros of FIQH (zo , z 1, ~2). The number 
of zeros of any section in H”( X, W2,1) is lower than or equal to the degree of W2,1. The 
vector bundle (p* W2.1 takes into account this fact together with the morphism (r2, which 
pulls back from the CM and relative coordinates of the two electrons. The rank of q* W2,1 
is the same as the rank of W2,1 but the degree, due to the finite morphism, is cl (q* W2,t) = 
2k(k + 1)3. The slope 

~(v*W2,1) = 4m(k + 1) (31) 

encodes the charge of the quasi-hole via a generalization of Dirac’s quantization condition: 

/4(D*W2,1) = ~H@H. (32) 

But @H = 4m2(k + l), so that 

qHk2(k + 1) = 4m(k + 1). (33) 

On the left-hand side of (33) we have the product of the charge of the quasi-hole times 
the total magnetic flux which picks up three multiplicative contributions: (1) (k + 1) is the 
magnetic flux in the unit principal cell due to the external magnetic field and the QH. (2) 
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rn* comes from the scale factor of the area which arises because the QH coordinate zo is 
l/m times the particle coordinates zi. (3) Finally factor 4 is due to the process of taking 
CM and relative coordinates. The right-hand member is a topological invariant, the slope 
of the PO* W2,1 bundle, implying that @I = l/m. This agrees with the count of zeros of FIQH 
which is m(k + 1) = b~(q* Wz,t). 

3.3.1.2. Two electrons and two quasi-holes. Let us consider the morphisms: 

.x E 

s14 2 p S24 

Jy 2 z(4) = I:x.tcx.Ex .?z %EX_Z 

s13 J \ S23 

z .x 

defined by 

~12(21~z*.z,~)=(z1 +z*,z1 -z2)* 

s13(Zl,z2,Z,~)=Zl --z, s14tz1, z2, z, w> = Zl - w, 

s23(zl, z2, z, w> = z2 - z, s24k1, Z2, z, w) = z2 - w, 

S34(Zl, z2, z, w) = z - w. 

Under the condition k = 2m the line bundle over Ec4) describing the system is 

Under the change of variables c : Zc4) -+ Xc4), d ( zl, z2, z, w) = (zl, z2, -z, -w> the 

bundle M2.2 becomes 

where S34(z, w) = w - z and mij are the partial addition maps. The quantum space of 
states of two electrons and two holes is the subspace Ek (2,2) of the space of holomorphic 
sections of N2,2, ZYZ’(E(~), N2,2), if VI/,,, = H’(.E, Ll). 

Again there are distinguished wave functions for two quasi-holes: 

(m(z1 + z2) + 2 + wlmt)W 
112 

[ 1 1,2 (Zl - z*lt) 

(34) 

which is a section in Ek(2,2) with no zeros away from the diagonal. 
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The bundle of effective wave functions of the two quasi-holes is the bundle over 27 x Z 
defined by l7&N2,z = W2,2, where l734 : _Ec4) + _E x II: is the natural projection on the 
last two factors. Let us observe that W2,2 can be interpreted as the bundle over C x _Z 
obtained by integrating N2,2 with respect to the first two variables. The vector space of 
effective wave functions of two quasi-holes is therefore H’(_Z x Z, W2,2), the space of 
global sections of WQ. The rank of W2,2 is (k + 2)2. 

The effective wave function for the selected two quasi-hole wave function above is 
proportional to 

Exchanging two quasi-holes amounts to changing z - w to w - z; a factor eiKim arises and 
the statistics of the quasi-holes is anyonic, in keeping with the fact that their electric charge 
is fractionary (see [ 171 for a similar argument in the complex plane). 

3.3.1.3. N electrons and one quasi-hole. The bundle characterizing the system is a line 
bundle over Z(o) x (Z(t) x . + . x (Ntimes)Z(,v)) of the form: 

MN,I = (pT& @*.. ‘8 &Lk) 8 (@$&+&d, 

where sic is the morphism E(O) x X(i) + Z defined by sio(zo, zi) = zi - zo. As in the 
N-electron case one considers the morphism PN : EN + EN, ~N(ZI, z2, . . . , ZN) = 

(CiN,IZi, Zl -Z2, “*t Zl - ZN) to identify MN,I with 

where k = Nm. It is also convenient to use another morphism o : Z x EN + C x EN, 

a(zo, Zl, . . . , ZN)=(-ZO,Zl,..., ZN), to obtain the bundle 

NN,~ =o*M~,l = (pTCk@*"@P$Lk)@ 

The quantum space of states is a subspace of the space of global sections H”(Z x 
.X N, NN, 1) of NN, 1. A wave function for the quasi-hole is a section in Ek (N, 1) 

FQH(zo Zl l  , ,...,- N)=O 

distinguished by having no zeros away from the diagonals. 
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The bundle of effective wave functions of the quasi-hole is obtained by integrating NN, 1 
along the variables zt , . . . , zN: 

N 

wN,l = t’OdN.1 = PO* gKPT1sk 63 $O&), 

i=l 

where po : .E x EN + E is the projection on the first factor. The vector space of effective 
wave functions of the quasi-hole is precisely H’(E, WN,~). We have for the rank, first 
Chem class and slope of WN, 1 the following: 

rankWN.1 = (k + l)N, cl(WN,l) = Nk(k + l)N-‘, 
Nk 

dwN,I) = - 
k+l’ 

The Dirac quantization condition (33) becomes 

qHk2(k + 1) = N2m(k + l), (35) 

and the electric charge of the quasi-hole is qH = l/m. To derive (39, a parallel analysis 
to that previously performed leading to (33) should be done; again, there is an isogeny q : 
.X0 -+ Ecofdegree(k+1)2andrank(~*W~,t) = (k+l)N,C1(p*WN,l) = Nk(k+l)N+l. 
The slope 

&‘*wN,l) = N2dk + 1) 

is the right hand side of (35) which encodes the electric charge of quasi-holes by an identical 
physical analysis that is used in the discussion developed in the N = 2 electron case. 

3.3.2. Geometric formulation of a system with quasi-particles 
Finally, let us rigorously define a system with two electrons and one quasi-particle moving 

in a periodic lattice. In this case we arrive at a surprising conclusion in some sense hinted 
by Haldane and Rezayi: there are no quantum states for the effective wave function of 
one quasi-particle. This phenomenon is reminiscent of what happens in the complex plane. 
Therefore, the definition of quasi-particle requires that some states should jump to the next 
Landau level. The loophole is to interpret the non-analytic states as the annihilation of some 
honest states in the first Landau level that does not enter the quasi-particle wave function. 
This is not possible in the case of a periodic lattice; the isogenies of degree higher than 1 
involved force all the states into higher Landau levels. There are no global sections and no 
effective wave functions for quasi-particles on a torus. 

As in Sections 3.2 and 3.3 consider the morphisms Z x E x 27 -, ,E defined by: 

SIO(ZO, ZI, z2) = 21 - ZO, S~O(ZO, ZI, z2) = z2 - zo as well as ,512 : E x .zx~_,Ex~ 

defined in Section 3.3.1.1. The system of two electrons and one quasi-particle is defined by 
the line bundle over E x E x Z: 

where k = 2m. 
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By an argument similar to that used in Section 3.3.1.1, we can compute Wi = po * h4$. 
There exists in this case an isogeny q : _E + E of degree (k - l)* such that 

Then we have that: rank (Wi) = (k - l)* = rank (q*W,‘), cl(p* Wi) = -2k(k - 1)3, 
q(Wi) = -2k(k-l).Theslopesare:p(Wi) = -2k/(k-l)and~(~*W~) = -2k(k-1). 

Obviously H’(X, (p* Wi) = 0. From this fact one easily deduces that H’(X, Wi) = 0; 
the vector space of the effective wave functions of the quasi-particle in a periodic lattice is 
empty. 

In a physical vein this means that the Haldane-Rezayi ansatz 

envisaged by them as the likely wave function for quasi-particles is not holomorphic because 
of the existence of poles. 

4. Vector bundles over elliptic curves 

In this section we analyze how the Hall conductivity is defined as the slope of certain 
vector bundles related to the center of mass dynamics in the FQHE. Extension of the 
Thouless approach [5] to the fractionary case requires remarkable modifications and leads 
to a very subtle description of the plateaux, which in samples with weak impurities is due 
to another physical mechanism. 

4.1. The Hall conductance as a topological invariant 

A synthesis of the Thouless formulation runs as follows: Connect two current leads to 
the two-dimensional electronic bar, see Fig. 1, in order to study variations in j induced 
by solenoid fluxes b(t) passing through the current loops and slowly changing in time. 
Due to the Aharonov-Bohm effect, the electron wave functions feel global phase factors if 
$I~, I#+ E [O, e/he] and the physics is periodic in 4 with e/ hc period. 

The many-electron Hilbert space is the fermionic Fock space [3] obtained from L*(C), 
the one-particle space of states, by anti-symmetric tensor product: if f(z, Z) E L*(C), an 
element P E F!v’( L*(C)) has of the form: 

p(cr) = f 1 is the parity of an element u of the permutation group SN. 
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Solenoid 

321 

Solenoid 

Fig. 1. The double Aharanov-Bohm experiment. 

Formally, the fermionic Fock space, 

E(L2(C)) = c P’(L2(C)) = E ANL2(@), 
N=O N=O 

is the exterior algebra of L2(@). From the skew symmetric product 

(slf) = 1 y g*(zV Z)f(z, 2) = (B&Y)* 

an L2-structure in FLN’((c) is induced: 

(*I@) = 
J 

N Gidzi 
n -P*(zl, 21; . . . ; 
i=l 2i 

ZN, ?N)@(Zl, 21; . . . ; ZN, ZN). 

The many-body Hamiltonian describing the dynamics of the two-dimensional electron sys- 
tem is 

H(@([), 6(O) = $ ($,a~’ + 4(Q12) + Q(z(‘), P)) 
e 

+Cu2(z W, z(i); ,(j), z(j)). 

ixj 

Here 4(t) = &x(t) + i&(t), 8:) = a,(i) + $B$‘), zCi) = xCi) + iy(‘) is the coordinate of 
the ith electron. We choose B = Bk, -e is the electron charge and U1, U;! are the one- and 
two-body energy interactions for the electrons, respectively. 
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The Kubo-Thouless formula computes the Hall conductance in first-order perturbation 
theory induced by adiabatic changes in 4 (t) : 

if vo is the ground state of the system, the eigenstate of lowest eigenvalue of H (4(O), q(O)). 
Physical arguments show that gH is a topological invariant independent of time: im- 

purities are taken into account in the Hamiltonian by the Ut interaction energy and they 
create localized states which do not contribute to the Hall current to be added to the ex- 
tended Landau states. Adiabatic changes in the fluxes trigger changes in UH but not in 
conductance, the injected electrons filling in localized states.The non-zero matrix elements 
(Wo (a H/l@ 1 WE) occur only for values of the energy in a mobility gap. However, because 
the fluxes change in time orJ is also independent of 4(t) and hence, equal to its average 
value: 

(36) 

Complex line bundles .C(E; C) over a genus 1 Riemann surface are topologically classi- 
fied by the first Chem class. Via Chem-Weyl theory it is determined in terms of the curvature 
of a U(l)-connection: cl(L) = (1/27r) s, Fa. If E is the torus parametrized by #I,& we 
see that oH = (e2/h)ct(C), the Hall conductance is a topological invariant because the 
integrand in (36) is 

do = -2iIm (2 lz)d&d&, (37) 

where a! = -2iIm (PO la!&/a&) d&. The fact that (m) = OH, of physical origin, geo- 
metrically means that the curvature tensor F, is constant in E. 

Therefore, OH = (e2/h)n, n E H, because any possible connection in (37) is topolog- 
ically equivalent to IX(~) = -2ni&d&, independently of the details of the ground state 
PO. The quantification of the Hall conductance in the QI-IEl, as well as the existence of 
plateaux (only integer jumps are allowed), is explained in this way by recognizing on as a 
characteristic class. 

One might try to apply the same analysis to the fractional quantum Hall effect looking 
for a ground state r times degenerated. The Kubo-Thouless formula 

identifies OH as the slope of a rank r complex vector bundle over x, E(Z; @‘); cH = 
p(E)e2/h = (cl (E)/r)e2/h. But an important problem arises: for the FQHE there is a 
very sound variational ground state proposed by Laughlin [4], which is non-degenerated. 
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To explain the existence of plateaux in the FQHE another point of view must be ex- 
plored. 

There is a refinement of the Laughlin theory of interest for understanding UH in the FQHE 
as a topological quantity: when the FQHE occurs in a periodic lattice there is a variational 
ground state of Laughlin type [lo], that we have studied in the previous section. The most 
important point is that this ground state is degenerated due to the dynamics of the center 
of mass. This fact has been brilliantly exploited by Varnhagen [ 111, to identify OH as the 
slope of certain vector bundles constructed from the center of mass contribution to the 
Haldane-Rezayi wave function. 

4.2. Center of mass dynamics 

Center of mass degeneracy is crucial in the intelligence of Hall conductance as a topo- 
logical invariant in the FQHE; it is thus important to unveil what the dynamical origin of 
this degeneracy is. We shall recall how it comes about from an abelian topological field 
theory of Chem-Simons type, along the lines developed in [ 181. The periodicity conditions, 

F,,(Z + 1) = e2ni@1 F,,(Z), 
F,,(Z + r) = e-2ni~e-2nim(z+7/2)Fcm(Z) 

satisfied by the basis states 

(38) 

of H’(_X, 13,), have their physical roots in the periodic lattice and the inclusion of the 
magnetic fluxes 41 = (e/k)&,, , & = (e/ hc)&,, E [0, 11, in the double Aharanov-Bohm 
arrangement described in Section 1. Mathematically, $J = 41 + i& is a local coordinate in 
2, the dual to the original curve, because it parametrizes the manifold of complex flat line 
bundles over _X. 2 is thus the Jacobian or Picard group of .X, which is isomorphic to _X 
itself. 

Consider a family of U(1) connections parametrized by [w on the “first Brillouin zone” 
2: 

a(t) = a@, ($1,@2; 0 Wl + ah (~1,49; Odda. 

The gauge group 6 = Maps(g, U(1)) acts on a(t) in an affine way: 

glr=a+igdg-‘=a+dw 

(39) 

if g(&, $2) = expM&, $2)) E 9. 

The Chem-Simons action is 

s a(t) A dc3’a(t), 

2xR 

(40) 
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where dc3) = d + a,t. Classically, there is a dynamical equation and a constraint equation, 
the Gauss law: 

i3a 

at= 0, *da = 0. 

To quantize the system we take the quotient by the gauge group imposing the Coulomb 
gauge, d*a = 0, and reduce the phase space by solving the constraint. The symplectically 
reduced phase space is the moduli space of the gauge equivalent flat connections, Fa, = 0, 

q = ~1 &b +c2dh 

with action 

We have imposed periodicity on the ~$t- and &-axis and have encoded the modularparam- 
eter in the complex structure. The c, are thus independent of 41, &J and take values in [0, 11. 

A choice of polarization in the reduced phase space J@ = H1 (Z, U(l)), taking ct as the 
“coordinates”, and ~2, as the “momentum”, paves the way to geometric quantization: the 
quantum space of states of the system is the L2 (W) Hilbert space of functions satisfying 

W(c1 + e) = P(Cl), P(cl)e2zimc1 = P(q). (43) 

A basis in the Hilbert space is formed by the eigenfunctions of the “position” operator in 
Et: 

1 E Z,, with eigenvalue l/m. 
The dimension of the space of states is thus m. Another basis is given by the Landau 

states, eigenfunctions of the operator 3,” = a,, +ia,, +i(2rrm/Im t)c2, satisfying boundary 
conditions as (38), of zero eigenvalue: 

411(c,t> = 0 [ CE +;yq (rnc,rnt>. 

Recognizing the center of mass wave functions is immediate: simply identify c as Z!. 
The outcome is that the center of mass dynamics is governed by an abelian Chem-Simons 
theory over the first magnetic Brillouin zone. 

There is more information in the space of states describing the CM dynamics. A rank m 

vector bundle over 2 can be consumed along similar lines to that of the papers by Vamhagen 
[ 1 l] and Novikov [ 191. First observe that 

fi(41, $2) = @ 
llm 

[ 1 o (mrllmt), &h+(b 2. 
m 

Em is the vector bundle over 2 whose fiber over (41 , 42) is the vector space generated 
by {fi, f2, . . . , &I. The principal cell $1, 42 E [O, l] in terms of n is nt, ~2 E [0, l/m]. 
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The periodicity 41 + 41 + 1 goes to ~1 += r]l + t/m and $2 + & + 1 becomes t/2 + 
r/2 + 1. There is a single zero in the principal cell of fm_t (#), n(O) = (1/2m)t + 1/2m, or, 
@’ = 4:” = 0, and no zeros at all for the others fl. This property is related, as we shall 
see in the next sections, to the first Chern class of the E, vector bundle. 

4.3. Vector bundles over magnetic Brillouin zones 

The aim of this section is to provide a rigorous geometrical construction of the higher rank 
vector bundles introduced above in connection with the center of mass dynamics. Recall 
that 2 is the moduli space of vector bundles over .E of 0 degree and rank 1. Let P be the 
Poincare sheaf over E x 2: P is a line bundle whose fiber over a point [r$] E .$ defining 
a line bundle Lo(#) over Z is precisely LO(~): 

P Icx[@= .co(@). 

Let nz and ~2 be, respectively, the two natural projections of .E x _$ into _E and 2. 
The physical situation in which one electron moves on a torus in the presence of a constant 
magnetic field of total flux 2nk and solenoid fluxes #t,& arranged as in the Thouless 
gedanken experiment is set forth in mathematical terms by the line bundle over .E x 2: 

where Lk = f3~ (ke) is the line bundle of k&order Theta functions over IT. The fiber of Lk 
in a point [4] E 2 is 

and we can interpret Lk as the line bundle over _E x 2 which parametrizes all the non- 
equivalent vector potentials leading to magnetic fields with total magnetic flux through Z: 
equal to 2nk, k being the first Chem class. Another mathematical construction of physical 
interest is the Fourier-Mukai transform of Lk, W (Ck): W (Lk) is a rank k vector bundle 
over2 which is obtained by taking the direct image to the last factor ,$ , 

W(Lk) = x2., (7@k ‘8 P). 

W(Lk) represents the dependence of Lk in the last variable and its fiber at a point [@] E 2 

is H”(z, ck @J LO(&)). 

Let us consider a system of N electrons in a periodic lattice under magnetic fields as 
described above. Recall that basic line bundle over (Z: x . . . x E) (N times) for N electrons 
inaHallfluidis:ifk=mN, 

where mN is the total addition morphism, Sij are the subtraction morphisms of Section 3.2, 
andC ,,, = Bz (me). Quantum fluctuations suppress the dependence on the solenoid fluxes 
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of the contribution to the wave functions of relative coordinates zij .Only the CM quantum 
dynamics is affected by the solenoids and depends on 4. Therefore, the line bundle MN 
over $ x E x . . . x C(Ntimes) describing this more general situation is 

where L, includes the effect of the solenoid fluxes on the CM dynamics by means of the 
Poincare bundle construction: 

L, = n&CC, 8 P. 

In fact, following Vamhagen, we can consider exclusively the CM contribution. Geomet- 
rically, this amounts to focusing on the dependence of the bundle L, on the first variable; 
the bundle 

is therefore the bundle defined by (4. l), (4.2) and (4.3) in [l l] and referred to as E, in 
Section 4.1. 

It is interesting to see that the bundle WN(&) describing the dynamics of the center 
of mass is in a certain sense the Fourier-Mukai transform of a line bundle. Let us denote 
z= (E x **a x E(Ntimes) and 2 = (2 x . . . x k((Ntimes) for short and let nz and “2 

be the two natural projections of Z x 2 into Z and Z, respectively. Let Z, be the line bundle 

(PI +. . ’ + PN)*L, over Z = Z: X * *. X CS, pi : Z + C being the natural projections. 
The Fourier-Mukai transform of the line bundle Z, is the bundle over Z given by 

where PZ is the Poincare bundle over Z x Z (see [16,17] for details). 

If we denote by 2 5 Z the diagonal immersion, A(&) = (4, 4, . . . , q5), our bundle 
WN (&) is related to the Fourier-Mukai bundle QN (Z,) by the formula 

WN(&) = A*C?,(Z,) = A*Z7~*(Z7~Zm @ Pz). 

One deduces that WN (&) is a vector bundle over 2 of the same rank as the vector bundle 
fin over 2. But the rank of S2,v(Zm) can be easily computed (see [16, Lemma 11) 

rank QN(Z~) = dim H’(Z, Zm) = dim H’(E, &) = m 

in keeping with the physicist’s description in Section 4.2. 
To compute the degree of WN(&) consider again the isomorphism 6 : Z + Z, 

6(Zl,Z2,. . . f ZN) = (Zl, Z2 - Zl, Z3,. . . , ZN). Then 

t*(m;(n$rn 8 P>) = ~N-l*(~~_l(~&n @?)I, 

where n&t : Z(1) x . . . x z(N) + E(2) x ... X EN is the nabEd prOjeCtiOn Onto the 
last N - 1 factors. 
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There is an isomorphism between vector bundles: 

n,*(t*) : WA4G?J 2 wN-lcGn). 

In some sense the fiber bundles WN(&) are independent of the number of particles. In 
particular 

deg WN(&) = deg WN-I(&) = deg Wl(C,), VN E N. 

W1 (C,) = fli., (17$,Cc, @ P) is the Fourier-Mukai transform of C,. Let us consider 

the isogeny q~r. : Z: + J? defined by 

where T, : .E -+ Z is the translation by Z. It has been proved in [16] that there is an 
isomorphism 

C&w, (&> 2: HO(Z, L,) C3 Lz-‘. 

One then has 

(4) 

detlpiWt(&) = (Lj$-l)‘m = LE-“. 

But 9~ is a morphism of degree m*, and hence 

deg Wr (CA = 
deg(det (PZ Wr (GA) = _ 1 

m* 

and the slope of the bundle W1 (&) is 

From the isomotphism WN (I&) 7 WI (C,) one deduces that 

deg WN(~&) = -1, dwN(&n)) = -;. 

Formula (44) also allows us to prove the stability of the bundle WI (L,) and, bearing in 
mind the isomorphisms WN(,!&) 7 Wl(,&), the stability of WN(C,) for arbitrary N: 

Let F c WI (C,) be a subbundle of rank I < m and degree d. The stability of WI (&) 

is equivalent to proving that 

deg(fl = d < 0 

for any subbundle 3 because then the slope of any subbundle of W1 (C,) is strictly lower 
than the slope of WI (.C,) itself. But realizing that deg(qoin = deg(@) . deg 3 = m*d, it 
suffices to prove that the degree of $J is negative. Let us observe that formula (44) implies 
that det(&3) is aline subbundleof Ar (H’(E, L,) @ LE-‘), whichcan bedevelopedas a 
direct sum of very negative line bundles over .E; from this one can deduce that deg cp;F < 0 
and hence, d < 0. 
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That is, we have stated and explained how to prove the following: 

Proposition 2. The vector bundles WN (&) describing the dynamics of the center of mass 
are stable vector bundles for every N > 0 and every m > 0. 

The details of the proof will appear in [ 141. 

4.4. Physics of the slope 

From the analysis of Sections 4.2 and 4.3 a fact with important consequences follows: 
The filling factor of the Haldane-Rezayi ground state is a quantity of topological nature, 

essentially the slope of the vector bundle J2t (L,), 

WR = ; = IP(W(J%l. (45) 

It would seem that the identity UHR = ]p( WI (I&) 1 is somehow accidental; we have 
deduced that UHR = l/m and Ip(Wl(&)l = l/m by distinct arguments in completely 
different contexts. 

To establish the connection, we apply the Thouless formula to the HR wave function: 

where ql, 1 = 1,2, . . . , m, is 

%F/IdJ1,$2;zl,~~., ZN>=FI(~1,~2;Zl,...,ZN)e 
-(l/2) Ci IZil’ 

Let H”(5 x Z x . . . x E, MN) be the space of holomoqhic sections of the bundle MN 
defined in the Section 4.2. Let us consider the subspace h”(E x E x . . . x Z, MN) spanned 
by the sections Fl. 

2?‘rimh/e2CQ is the trace of the curvature of a rank m vector bundle over 2 which is 
homeomorphic to WN (~5~). To show that this is so, notice that: 
(1) Extending the basis set (Fi} of ho to a basis of H”(k x X x . . . x Z, MN) (0~) 

essentially computes the slope of the bundle nk.,MN. The integration in the particle 
coordinates zi meant by the hermitian metric (I) is translated in algebro-geometric terms 
by taking the direct image ~*.,MN to the first factor. 

(2) The subspace h”(I?, ni.,M~) is isomorphic to the space H”(k, WN(.&)) of holo- 
morphic sections of WN(&). 

Therefore, (oH) = (e2/h)uHR is also proportional to the slope of WN(&). Given the 
isomorphism WN(,&) S WN_I (Lc,), it shows that the identity UHR = Ip(Wl(&)l is not 
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accidental. By establishing these isomorphisms we have shown that oH = 1 /m for all values 
of N. This is the mathematical statement of the existence of an effective mean field theory 
given by WI (&). Moreover, a direct approach on the enormous calculation involved in the 
determination of the integrand in (46) was made by Varnhagen, using asymptotic methods 
when N + 00, in the appendix of [ 111. 

His result 

(47) 

fits in perfectly with our isomorphism WN(L,) 2 WN_~(L~) because he finds an N- 
independent answer. 

On the other hand, Vamhagen’s computation suggests that, in parallel with the Thouless 
analysis in the IQHE, (a) = au also happens in the FQHE Geometrically, this means again 
that our bundles WN(.&) are homeomorphic to the F, bundle characterized by the U(m) 
connection 

2ni 
w = -- 1 mxm&d& m 

I mxm is the unity m x m matrix, of constant curvature: 

tr R, = -2nid& A d&. 

According to Donaldson [20], the indecomposable bundle F, is stable because the trace 
of the curvature is constant in 2. We have by no means shown, however, that WN(&) and 
F,,, are holomorphically equivalent. 

WN(&) is a point in the moduli space of stable bundles of degree 1 over 2, identified 
by Narasimhan and Seshadri [21] as being homeomorphic to S’ x S’ . There exists a family 
of vector bundles E,,, (cl, ~2) with unitary connections 

1 
Gw(c’J2) = (-+#.‘I +c,)d&+c,d#, 

cl, c2 E [0, 11, which are the absolute minima of the Yang-Mills equations on 2, 

d;R, = 0 

modulo automorphisms. The curvature for any @(cl, ~2) is 

so that cl(E,(ci, CT)) = (1/2ni)Jg tr R, = -(l/m) . m = -1 Vq, ~2. 

A qualitative explanation of the role played by the moduli space of stable bundles in the 
existence of plateaux is as follows. 

Because the FQHE occurs only in high-mobility samples, only weak impurities are of 
interest. Strong impurities destroy the FQHE and the physical mechanism leading to the 
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IQHR plateaux does not work. Tao and Haldane [6] study how a potential describing both 
the impurities and a uniform background affects the Haldane-Rezayi wave functions and 
the topological nature of the OH in the FQHE. Adiabatic changes in the solenoid fluxes and 
impurities produce changes in the filling factor. The estimation of the modification induced 
in OH requires one to know the effect of the impurities on the degenerated ground state. 
Under the assumption that impurities are not strong enough to fill the gap to the first excited 
state, i.e. 

where aj E @, c, E [0,2rr] are constant. The non-zero amplitude transitions induced 
by Viq between the HR wave functions means that the degeneration of the ground state 
disappears and new eigenstates arise that differ in energy by a very small amount from it 

,@’ = ebb #I +ic2@2 P~HR 

(Ho + &mp>*y = (Eb + EI)py. 

Since the splitting in energy is so small due to the weakness of the impurities, the Kubo- 
Thouless formula is still applicable. The important point, not explicitly noticed in [6], is that 
phases appear in the new lower energy sections as a response to the action of the impurities 
on the center of mass dynamics in the presence of solenoid fluxes. 

The connection obtained from these new sections corresponds to E, (cl, c2), the HR state 
being the E,,, (0,O) case. Thus, variations in the filling factor merely produce variations in 
the moduli space of stable bundles; the slope of the bundle being the Hall conductance, oH 
remains the same all over the moduli space; this explains the plateaux. This is an amazing 
result: a highly complex two-dimensional gas of interacting fermions self-organizes itself 
in such a way that it can be described by a stable bundle, which is a very subtle concept 
in algebraic geometry. We wonder whether, as in the Yang-Mills system over a Riemann 
surface, there is any relationship between dynamical stability and algebro geometric stability 
in this multi-particle fermionic system. 

A final comment: The role of localization in the IQHR is crucial as regards the existence 
of plateaux. Variations in electron density when r#~r, ~$2 vary as functions of time do not 
affect cH because the change in un occurs in localized states around impurities that are not 
conducting. We have seen that in the FQHE the variations due to changes in 41, & and 
the switching of weak impurities merely produce “motion” in the moduli space of fiber 
bundles. There is no role for localization in this argument due to non-binding impurities; 
the FQHE occurs in samples with very low levels of disorder!. 

5. Summary and outlook 

In this long paper we have addressed the problem of developing a mathematically sound 
formulation of the theory of the quantum Hall effect in a periodic lattice. We found algebraic 
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geometry as the natural framework and by completing this program we have achieved the 
following goals: 
1. When restricted to the first Landau level, the fermionic Fock space for a two-dimensional 

gas of electrons moving on a lattice is identified as the space of holomorphic sections of 
certain line bundles. 

2. Application of the addition formulas of algebraic geometry to the wave functions in the 
Fermionic Fock space provides a generalization of Slater determinant developments to 
the periodic case, allowing analytic computation of the filling factor. 

3. Quasi-hole and quasi-particle Fock spaces, as well as the corresponding wave functions, 
are also identified. 

4. The non-trivial center of mass dynamics arising in the periodic case is described in terms 
of the space of sections of a vector bundle. This vector bundle is rigorously defined. 

5. It is shown that the Hall conductance is the slope of the above-mentioned bundle. A 
topological argument for the existence of plateaux is thus provided. Moreover, it is 
proved that the CM vector bundle is stable. 

As a future research in this area we propose two lines of both physical and mathematical 
interest: 
- We plan to prove the existence of canonical hermitian structures over the bundles WN (15~). 

This would explain the special character of the variational ground state, the Haldane- 
Rezayi wave function, between the sections in H”( 2, WN (C,)). Also, random lattices 
enter our approach by allowing one to vary the modular parameter. Both modifications, 
to be performed in a future work, suggest strong theoretical connections between the 
FQHE and conformal field theories. 

- To be precise, the explanation of Section 4 is referred to the first plateaux. To extend 
the arguments to other experimentally observed values it is necessary to consider the 
K-matrix theory of Zee and Wen [22], see also [23]. The theory developed in this paper 
will be generalized to this more general situation by replacing elliptic curves by abelian 
varieties in a forthcoming paper. 
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